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A well-known method of analytical mechanics consisting of applying ideal con- 
straints is used to construct the equations of motion for a model of an asynchronous 
machine with a squirrel-cage type rotor, and the dynamics of this machine is stud- 
ied for the case when the time constant of the mechanical motion is much greater 

than the time constant of the electrical processes. The ideal character of the con- 

straints is proved and it is shown that from the dynamical points of view, the squir- 

rel-cage type rotor is equivalent to two orthogonal sinusoidal windings only in the case, 
as Kron postulates p],when the stator windings have sinusoidally distributed turns. 

Although the theory of electric machines with rotating rotors which treats these 

machines as electromechanical systems has undergone a considerable development, 

the collectorless machines with solid or squirrel-cage type rotors appear to have 
fallen outside the scope of this theory [l]. The only relevant theoretical work 

known to the authors is based on the assumption of Kron [Z] that a squirrel-cage 
type rotor is equivalent to two orthogonal sinusoidal windings. This assumption is 

however still unproved. 

motion for an asynchronous machine with a squirrel-cage type rotor, using the auxilliary 
model proposed in [3]. The model consists of twocoaxial hollow cylinders of radii a 

and 0 with thin conducting walls. The outer cy- 
linder (stator) is fixed and the inner cylinder (ro- 

tor) rotates about the common axis 0 (see Fig. 1). 
It is assumed that both cylinders are anisotropically 

conducting, i. e. the stator and the rotor currents 

flow along the cylinder generatrices and the lengths 
of the cylinders is such that the end boundary ef- 
fects can be neglected. 

Fig. 1 
h 

bet the total current across a section of each 
cylinder be equal to zero. The rotor and stator 
current densities ;,, and ,j,, ( *) can be expressed 
in the form of series [4] 

-. 

l ) Editor’s note. Symbols IJ and ’ used in this paper as subscripts or superscripts, 
refer to rotor and stator, respectively. 
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Here the angle 8 is taken in the fixed coordinate system and the angle (1’ in the rotat- 
ing coordinate system attached to the rotor. With the currents given in the discrete form 

shown above, the quantities 
Xhr %k> xk, xk 
1 2 3 .3 

are generalized coordinates. The Lagrangian function of the auxilliary model has the 
form n 

I,* = -+ 2 ;L, (xh.‘2 i- q-2 + Xk*2 + Xti.2 + 2M ((Q’ cos /icy - 0.2) 
kc71 1 ‘2 3 4 1 

3tk' sin h-cl) x~’ + (xic’ 
2 3 1 

yin h’v + Xh-’ co.7 Iccp) xk’]} $- f Ic17’2 
2 4 

where 1 is the moment of inertia of the rotor, Lr, is the coefficient of self-inductance 

and MI, is the coefficient of mutual inductance ; we have 

The generalized forces are determined from the expression for the virtual work 

I--l 

The rotor and stator resistances RrkP and R, kc' are computed from the formulas 

and the equations of motion of the auxilliary model are written in the form ot Lagrange- 
Maxwell equations 

LdL,_, ?lL 

dt Oqk’ dqh- 
=- I& (k ~--= I, 2, . .) (1.4) 

which are constructed using the expressions (1.2) and (1.3). 

2. Aaynchronou8 machine with linuroidrl winding: on the ntator. 
We shall now consider a model of an asynchronous machine with the squirrel-cage type 
rotor, which is obtained by imposing ideal constraints on the auxilliary model. The rea- 
lization of these constraints which restrict the currents in the auxilliary model presuppo- 
ses the presence of certain additional emf (electromotive force(s)) which, by analogy 

with the classical mechanics, shall be called the generalized constraint reaction forces. 
We shall see further that in the present case the constraints are ideal, because certain 
currents pi-describing the state of the system, vanish. The virtual work done by the ad- 
ditional emf (constraint reaction forces) also vanishes, since the relations og, = 0 
hold on the segments at which these emf are applied (the situation is analogous to the 
case of a solid rolling without slipping). It will be shown that this is precisely what hap- 
pens when we pass from the auxilliary model to the asynchronous model of the electric 

machine. 
For the sake of definiteness we shall consider two models of an asynchronous machine 

with a squirrel-cage type rotor. In the first model the stator has the windings with sinus- 

oidally distributed turns, and in the second model the turns of the windings are distributed 
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uniformly. 

We begin by considering the simplest case when the stator has two windings with sinus- 
oidally distributed turns. As we know, to generate a rotating magnetic field it is suffici- 
ent to place the magnetic axes of these windings at right angle to each other and apply 
to them the emf shiftedin phase by x I’ 2. Let the turns of the first winding be distri- 

buted along the circumference of the stator according to the law E ( cos 0 1, and the 

turns of the second winding - according to e 1 sin 0 1. If a unit cross section area of 
each winding contains m conductors carrying the currents ql’ in the first winding and 

g,’ in the second winding, then the combined current density in the stator windings is 
equal to 

Comparing this expression with (1.1) we find, that in the present case the model of an 
asynchronous electric machine can be obtained from the auxilliary model by imposing 
on it the following constraints: 

. . 
3tj< --: zt,< : 0 (1; -= 2, 3, ,) 
3 1 

To realize these constraints, it is sufficient to apply additional emf across the circuits 

of the auxilliary model through which the currents 

are flowing, the emf being of such magnitude and polarity that the resulting current 

through these circuits becomes zero. We have said above that the virtual work done by 
the additional emf is equal to zero, therefore the constraints imposed are ideal. 

The Lagrangian function (1.2) now becomes 

L* zz + /A (41” + g2”) !_ M (Xl’ COS Cp - X1* sin (p) ql’ ~( 
1 2 

where the following notation is used : 

Xl * = Pq1’7 ;1’ = (342’, L = LIP2 = 2pp2 (x I c)” 
3 

M = phf, = 2ap (3l / cy, a =ma~, /3.= mbe 

Let us denote the ohmic resistance of each stator winding by R and introduce the gene- 
ralized forces by means of the following expressions : 

(I,,, :z (E + e) cos oli - Rq,‘, Qq2 = E sin ((or + +) - Rq,’ 

V;, = - RG’, Q;, == - H,“^.’ (k = 1, 2, . . .), e9 = K (cp’) 
1 

where we assume, for the sake of generality, that the emf applied across the stator wind- 
ings differ from each other in amplitude by the quantity e , and in phase by $. 

The equations of motion of the model of an asynchronous machine under consideration, 
have the form 
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I,kx,i” + X1x,' = 0, J+,” + R,x,’ = 0 (k = 2, .f) , . ,) 
1 1 2 2 

Icp” -I- M \ql’ (x1* sih v+x,’ cos VP) - q2’ (x1’ cos tp-X1’sin cp)l= K(cp’) 
I 2 1 2 

Since the variables 

Itk (/? = 2, 3, 4,. .) 
1, 2 

have become separated and decay with time, the equations for these variables can be 
omitted. 

In the dimensionless complex variables 

5= $(q,‘+q2*), 5t===+[X1coscp-X1sin~$ 
1 2 

i (3c1 sin cp li_ ?tl cos rp)] 
1 2 

the dynamics of the model under consideration is described by the following system of 

differential equations : 

(2.2) 

[z = lxllf, E = ‘p”o;‘, a = 2P (e + it@)] 

where we utilize the inequalities e 4 E and v 4 1. The dimensionless parameters in 
(2.2) are determined by the expressions 

We note that Eqs. (2.1) readily yield the equations of a single-phase asynchronous 
machine with a squirrel-case type rotor. These equations have the form 

i//l”+ Rq,‘+Ms,” = E cos tolt, i,,n,“+L,@x,’ +Mql” $- rl,rr,*==ct 

II~‘” -!- Mq,‘x,’ -1 K ((p‘). LLgc** - Llcp’jll’ - Mql’c+’ L- Rlsl,’ -2 0 

(;[I’ -:: x1’ cos up - xl’sin (p, nC’ = x,’ sin (p + 3C1’ cos rp) 
1 a 1 2 

Let us now consider a model of an a~nchrono~ machine with three sinusoidal wind- 
ings of the stator ; the magnetic axes of these windings are placed at 120” to eachother. 
If m is the number of quasi-linear conductors per unit cross section area 06 the stator 
winding and z is the maximum thickness of a single winding, then the surface curent den- 
sity on the stator j, is given by 
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where ql’, qz’ and .T:~’ denote the currents in the corresponding windings. Let us replace 
the currents q2’ and 4:]’ by the currents q,.’ and ‘/,,’ using the following relations: 

(I.2 l = q,‘-- TV’ + 1 / m&,“, q:,’ c/; -- qv’ - 1 / r/z lfi’ 

Then the previous expression becomes 

i e ~= rnc J q+.’ Cos 0 i qv’ sin it) 

On the basis of (1.1) we find 

which implies that the constraints in the present case are ideal, The bgrangian func- 
tion has the form 

f !- ‘* 

To find the generalized forces we construct an expression for the virtual work 

hence 

0 ,,r m= R (2qx* - 3qls), Qi, =: K (rp*) 

Qrlr _~ /:’ cm w,/ -+ 211 (cfl’ - (I?‘). (j,!,, _A Ii: sin (~),f - ‘.i3Rq; 

The function f,, is independent of the coordinate qr and of its time derivative, there- 
fore the Lagrange equation (1.4) for this coordinate degenerates to the relation 1,’ = 
:I i scfi *. from which we can find iI using the known function Q~‘. 

‘l’he equation of motion for the model of an asynchronous machine become analogous 
to (2.1) when e -1) ; 0 ,and (1,, q2 are replaced by (I~, q,,, and [i by 2’,f$. Con- 
sequently the dynamics ot the asynchronous machine with three sinusoidal windings on 
the stator does not differ from the dynamics of the asynchronous machine with two sinus- 
oidal windings, This result can be extended to a stator with an arbitrary number of sinus- 
oidally distributed windings. We can therefore conclude that, when a stator has sinusoidal 
windings and the corresponding emf necessary to generate a rotating magnetic field are 
present, then the asynchronous electric machine with the squirrel-cage type rotor is dyna- 
mically equivalent to a model the rotor of which has only two closed sinusoidal windings 
with orthogonal magnetic axes. Thus the Kron’s hypothesis [Z] is confirmed for the case 
of the a~nchronous electric machine with sinusoidal windings on the stator. 

3. Asynchronous machine wfth a uniform winding on the 6trttor. 
Let the stator of an asynchronous machine with a squirrel-cage type rotor contain two 
orthogonal windings with turns uniformly distributed along the circumference. The 
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expression for the current density on the stator can be written in the form 

i, = me Iql- fl (0) I- q2‘ f2 fW 

where E is the thickness of a single winding, m is the number of conductors per unit 

cross section area of the stator winding and the functions fl (0) and f2 (0) are of the 
form shown on Fig. 2. Then 

Equating the expression for j, with (1.1) we obtain 

3~~’ _ 4p (- 1 j:‘;-l) sq;, 3’ = $ qr‘ ( ‘*, := 1, 3 3 .) (3.1) 
Z 
. l 

x*,z = Xzn _- 0 (/i m: 1, 2,. .) 
3 4 

The last relations in (3.1) represent, in accordance with the previous statements, the 

equations of the ideal constraints. We shall show that the remaining expressions in (3.1) 
also represent the equations of ideal constraints. Let us e. g. consider the enumerableset 

Fig, 2 

of the second group of equations in (3.1). They reflect the fact that the currents 

lck’ (k - 1, 3, . . .) . 
2 

are interdependent, namey 
. x:3 z: ‘/3X1., x5’ = ‘J$l’. . . . (3.2) 4 4 .t 4 

Moreover, the relation 
XI’ = (4B i n)42. 
1 

can be considered as another expression for the current 
constraints (3.2), the currents 

%k’ (h. : 1. :i, . .) 

4 

in the stator circuits were governed, in accordance with (1.4)‘ by the equations (Fig, 3a) 

x,‘. Before the imposition of the 
4 

L;,,t,” -}- &,$- = E, + E,” (Ii:=1 ) , t?, . . 
4 4 4 4 

Eki = - M, -$- (1~~. sin kp + xk’ cos xl(p) 
4 1 2 

Let us see how these circuits can be fitted into a new diagram, which can be obtained 

from the diagram Fig. 3a by replacing its part outlined by a dashed line, by that given in 
Fig. 3b. Here R,, R,, , . . represent the additional controlled resistances and E,, E,, 
. . . are the additional controlled emf . We can choose R, (t), R, (t), . . . E, (t), 

E, (0, . . . so that the relations (3.2) hold and the virtual work done by the additional 
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emf E, (t), E, (2). . . . applied in order to realize the constraints (3.2) is zero. In 
fact, the condition for the constraints to be ideal is, that the relations 

II = 3cs’, 13 = i, -;- x;, . . . 

iI 1 (3.3) 

where i,, i,. . . . are the additional circuit currents, hold. The condition (3.3) means 
that the total current on the segments n,E,. A&‘s, . . . is equal to zero. Let us write 

the Kirchhoff equations for the new diagram 

I 

Fig. 3 

b 

r-T--------- 

From the above equations it follows that if E,, E,. . . are defined by the expressions 

I:‘, ==: ES + E,’ - 1/3L:I~1” - ‘/3K.2xl’ (3.4) 
4 4 4 4 

E3 ~7 E, I- Ly - l/J&*’ - ~/&x1 

3 4 4 4 

then the relations (3.2) hold; for (3.3) to be held it is sufficient to define R,, X3, . . . 
in the form 

A1 _ :i (/:‘I - E.?) 
X8 ’ 

K 
3 

_ 15 (Es - /:‘,) 

8%’ ‘. . . 
4l 4 

where the quantities I<,, E,, . . . are replaced by their expressions given in (3.4). 
An analogous proof can be constructed for the other group of equations in (3.1). Using 

the relations (3.1) and introducing the notation 

(/c = i, 3, .) 

we obtain from (1.2) the Lagrangian function, which in the case under consideration, is 
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2 
ii=l, 3 

MC \ql’ (F* cos kcp -F’ sin kcp) + q3* (y,* sin kcp +;,’ cos k@l 

From the expression for the virtual work we find the generalized forces 

Qul = (E + e) cos orl - Roql*, Qg,= E sin (wrt + 9) - l&q2 

Q;, = - K+n’, (II =z 1, 2, . .), Qq = K (cp’) 
1 

Qp = - RI;,,: 

Now using (1.4) we can easily construct the equations of motion for the asynchronous 
machine with a uniform winding on the stator. 

In the dimensionless variables 

Lk = q [~K'c~s k9 - xii' sin k(p + i (-I)(“-1) 2 x (3.5) 

(Xk’ sin loop - xk’ cos iii)] 
1 2 

L= T = (Olt, 

‘If,0 
clti=Lh_, 

Ro p = - 
WLO ’ Pk= & 

k p 
-f = lol’L:l ’ 

K 
K”=m, G=$(e+iJ.E) 

the dynamics of the asynchronous machine in question is described by 
tern of differential equations 

the following sys- 

(3.6) 

The form of the above equations indicates that in the case of an asynchronous machine 
with a uniform winding on the stator, the squirrel-cage type rotor is not equivalent to 

two windings with orthogonal magnetic axes, i.e. the Kron’s assumption P] does not hold. 
Since setting 1~ = 1 in the system (3.6) converts it to (2.2) which describes the dy- 

namics of an asynchronous machine with sinusoidal windings on the stator, we study the 
dynamics of both models at the same time. 

4. Inv@,tigrtlon of the dynamic8 of the asynchronous machine. 
Let us consider two models of the asynchronous machine with a squirrel-cage type rotor 
described by the equations (2.2) and (3.6). the latter referring to the case o E 0. i.e. 
to the case of the stator windings under a symmetrical load. To simplify the investiga- 
tion, we shall use the following change of variables: 

i _ r&T, r [,1 -= v&s (U G u’ -I- iU”. U,< = U/<’ -+ iU/{“) 

which enables us to consider, instead of the nonautonomous system of differential equa- 
tions (3.6), the autonomous system 
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(4.1) 

The state of equilibrium of the system (4.1) corresponding to the steady-state mode of 
the asynchronous machine under consideration is determined by the values of the varia- 
bles &’ = n (a’ ~;_ [,“)-‘, rA’t = ___I) (a” + &2)-l (4.2 I 

Cl*’ = s,, l$fiiUn - (2 - i@‘l, U,%’ -= --Sol I,o,,IL’ m:m (I - xg)ii”] 

where the following notation is used: 

(4.3) 

The quantity $ is a root of the equation 

7 (a’ -+ b2)_’ 5 kh,c,*;S&. + :l’n (E, = 0 (4.4) 
ii =I, 3 

Let us consider the case when the time constant of the mechanical motion of the rotor 

is much larger than the build-up time of the electrical processes. Let 7: =I F < 1 and 

K,, (5) = F T (g). where T (ZJ -= y-“K, (Q is a finite quantity. We introduce the 
“slow” time a, = ET and write the system (4.1) in the form 

drr 
E- i-(f) j- i)il, 

dzo 
h. 1,3 

(k = 1. 2. .) (4.6) 

When e -+ I) , the motion of the system consists of rapid motions with respect to the 
variables ri and c,; and a slow motion with respect to E. The rapid motions are described 
by the system (4.5) in which the derivative is accompanied by a small parameter. The 
rapid motions can be studied by setting E = cctt.-. in Eqs. (4.5). whereupon they be- 

come linear equations. The stability of equilibrium which is attained by the variables 
u and v,( (Ii = 1, 3. . . .), in a discontinuous manner (as e --t 0) is determined by 
the roots p of the characteristic equation 
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A = ( ; /$-3)-l, a = atI- <, 1 

P=l, 3 

Setting z = JI -i- i, we introduce the parameter zu and write (4.7) in the form 

(4.81 

Thus, instead of (4.7) we shall investigate a family of characteristic equations (4.8) 
depending on the parameter zu (0 < zu < w). The point N: = I corresponds to the 
initial characterisfic equation (4.7). From (4.8) we see that if ,” < ‘! and all ,OJ~ > 0 

(h- ==1.3,. . .), then the point w = DC) belongs to the domain of stability. The curve 
W = U’ fi 0) which is obtained from (4.8) by making the substitution 11 = i w and 
varying (u from --oo to -l-00, determines the boundary of the D-partition [5] on the 
complex plane and, consequently, the boundary of the domain of stability with respect 
to theparameter 2~. We shall show that this boundary passes to the left of the point w = 1. 

In fact, the equation for w = w (i w) can be written in the form 

w(h) = AP,(io) i $ P,z(iw) 
k=l, 3 

where P,(iw)=OandPI,(io)=O &=1,3,. . .) represent the equations of 

circles passing through the coordinate origin and intersecting the abscissa at the point 
u? = 1 , when UJ = too. From this we find, taking into account the inequality a<l, 

that 2~ (t iC,)) = A 5 a2kk-1 CC: A 5 k-3 = 4 - - 1 

k=l, 3 k=l.3 

Thus the D-partition curve passes to the left of the point zu L-Z 1 and both points w E 1 
and w = 00 belong to the domain of stability provided that the following inequalities 

P >o, f.lk> 0 (h-=1, Z,...) 

When the ohmic resistance is present in the rotor and in the stator windings, the above 

inequalities always hold, consequently, the states of equilibrium for the rapid variables 
uand uk (k = 1, 3, . . .) are stable. The values of the variables u and vk in the 
state of equilibrium are determined from the expressions (4.2). Substituting these expres- 
sions into (4,6), we obtain the following equation describing the dynamics of the asyn- 
chronous machine in the present case : 

(4.9) 

where the electromechanical moment l&f, (g) in the notation (4.3) is determined by 
the exnression co 

M, (5) = (a 2 + b2)‘-’ 2 kh,p,SI, (4.10) 
k=l, 3 

The study of the dynamics of an asynchronous machine reduces in the present case to 
the process of partitioning the phase line E, into trajectories, i. e. to determining the 
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states of equilibrium on this straight line and defining their stability. The problem is 
solved by constructing a graph of the curve f (EJ = M, (EJ 3_ 7’ (EJ. The points of 
intersection of this curve with the abscissa determine the states of equilib~um of (4.9) 

corresponding to the steady-state modes of the asynchronous machine, and the sign of the 

derivative f’ (&) defines the stability of the mode in question. 

Fig. 4 

Instead of the curve f (Q we can construct the graphs of the curves M* = i%f* (g) 

and T = 7’ (E) and then investigate the character of their points of intersection. As an 
example. we present a graph (see Fig. 4) showing the dependence of the electromechani- 
cal moment &?, (5) on the angular velocity g of rotation of the rotor for an asynchro- 

nous machine with sinusoidal windings on the stator. The expression for this moment is 
obtained from (4.10) for k = 1 and has the form 

where the quantity s .= 1 - E is called the slipping of the rotor. Comparing the ex- 

pressions (4.10) with(4.11) we see that the electromechanical moment of an asynchron- 
ous machine with the squirrel-cage type rotor and the stator windings with sinusoidally 

distributed rums, differs from the moment of a similar machine with the uniformly dis- 

tributed turns. 
Figure 4 also shows the curve 7’ mz i” (E) depicting the dependence of the loading 

moment at the shaft of an asynchronous machine on the angular velocity of rotation of 

the rotor. 
The character of intersection of the curves .\I, : 31, (.) and 7’ = 7 (E) is determined 

by the relation between the parameters. Two of the possible cases are depicted in Fig.4. 
In Fig. 4a we have the unique, stable, stready-state mode. In Fig, 4b we have an unstable 

steady-state mode when the angular velocity ; --- 5, , and a stable mode when 5 -:: &. 
The value ‘$ _-- & represents a limit for the initial values of the angular velocity ; when 
F_ < $t the rotor returns to the state of rest, while for i, > & , it assurr.es the state of 

stable rotation with the angular velocity of $ = &. 
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Within the framework of the hydrodynamic theory of dense beams of charged 
particles the problem of shaping of a tubular cylindrical flow has been solved. 
For emission limited by space charge and temperature, shaping electrodes have 

been constructed; they were computed for exact solution and for asymptotic 
expansion, equally valid near the flow boundary. The possibility of generalizing 
the proposed algorithms for the case of curvilinear trajectories is discussed. 

In the hydrodynamic theory of dense beams the model of an emitter in the full 
space charge mode is most widely used. In this case for velocity U and field E, 

the zero values are taken. These assumptions lead to a fully defined form of the 

potential (I’ near the starting surface: in the flow domain cp - 2’s and in the 
Laplace domain v - Re lz + i (R--R,)]‘3. As the result we obtain a system of 
Pierce electrodes with the zero equipotential inclined to the beam boundary at 
the characteristic initial angle of 67.5’, irrespective of the emitter curvilinear- 

ity and of the density of current J at it. 
However, in recent times the interest has increased for triode guns with grid 

control [l - 41, guns giving sharp deceleration of the flow [S] and guns with auto- 
emissive cathodes. These structures are distinguished by a more complicated 
singularity for the potential in the low velocity domain. This singularity for a 
unidimensional flow between parallel planes are given by the following paramet- 
ric equations : z z ‘I6 J/” _!. ‘/“Et’ _! t-t, l’z : dz : dt, 2~ = $- 

The specific charge tl =- e / ~11 is omitted for reasons of convenience ; the 
change ,l(h -+ cp. hqJ - .I. z --: 0, I === 0 correspond to the emitter. 

For the structures mentioned above it is necessary to compute the shaping elec- 
trodes for the domain where the terms proportional to J, E and IT are commen- 
surable. In the triode gun, such a situation occurs when the potential of the con- 
trol grid deviates from its inherent value, i. e. from the value defined by the ” ‘.’ 
power law. In this case the grid can be considered as an emitter with nonzero 
conditions on it. 


